Governments, Mining Companies Executives and Shareholders Allow to Leave Behind and Never to be Recovered Capitally Accessed and Broken High-Grade Ore Underground Worth Billions of Dollars - Why????

MINEX Europe 2020

July 2020

By Krzysztof (Kris) Biegaj
Ausvac Mining Pty Ltd
Australia
Mining Project Stages

- Exploration
- Pre-feasibility study
- Feasibility study
- Approved
- Access development and mine waste disposal
- Mining
 - Various reconciliation/camouflaging factors used
 - Cleaning of mine floors not yet part of mining cycle in Australia and most of other Countries in the World
 - Exact % of gold/metals/precious stones lost/left on mine floors not yet determined
- Rehabilitation of disposed mining waste on surface
Post “normal” mining activities

- Pillars recovery
 - Expertise still available in Australia and other Countries
 - Artificial pillars
 - Cement grout packs
 - Gypsum packs
 - Steel props
 - Other
 - Diamond wire saw
 - Jack pots
Post “normal” mining activities - continued

- Stope wash-down
 - Can argue re amount gold lost in stopes’ floor cracks
 - South Africa
 - Stope supersucking/vamping
- Ore drives supersucking/vamping
 - Last cycle !!!!!!
- Sampling of recovered floor material
Floor sampling at CNGC Harlequin Mine in Western Australia (April 2001)

- Conducted by Kris Biegaj in 3.5m x 3.5m HV5F -41mRL in-stope single boom jumbo decline
- Mined through semi-horizontal quartz reef ~300mm thick containing 100-300g/t of nuggetty-type Au
- Five (5) separate layers taken across the 3.5m wide decline
 - With additional samples, nine (9) separate samples analysed
- Last layer taken with a small dust-buster vacuum cleaner
 - To the solid clean floor
 - Small weight of those samples
- Total weight of samples - 132kg
 - Unfortunately photos taken did not come out
From: Briggs, Matthew
Sent: Tuesday, April 03, 2001 2:36 PM
To: Biegaj, Kris
Subject: Channel sample from 41dec.xls

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au1 (ppm)</th>
<th>Au2 (ppm)</th>
<th>av gold (ppm)</th>
<th>sample mass (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HA2071 1</td>
<td>44.13</td>
<td>39.17</td>
<td>41.65</td>
<td>226.5869</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.717869</td>
</tr>
<tr>
<td>HA2071 2</td>
<td>61.62</td>
<td>69.10</td>
<td>65.36</td>
<td>449.6734</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.409199</td>
</tr>
<tr>
<td>HA2071 3</td>
<td>46.24</td>
<td>49.09</td>
<td>47.67</td>
<td>235.4799</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.785291</td>
</tr>
<tr>
<td>HA2071 4</td>
<td>35.61</td>
<td>42.47</td>
<td>39.04</td>
<td>800.361</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.067938</td>
</tr>
<tr>
<td>HA2071 5</td>
<td>83.31</td>
<td>65.45</td>
<td>74.38</td>
<td>766.1037</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.808216</td>
</tr>
<tr>
<td>HA2071 6</td>
<td>36.60</td>
<td>39.21</td>
<td>37.91</td>
<td>736.9121</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.5869</td>
</tr>
<tr>
<td>HA2071 7</td>
<td>28.23</td>
<td>40.11</td>
<td>34.17</td>
<td>792.0374</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.004833</td>
</tr>
<tr>
<td>HA2071 8</td>
<td>31.00</td>
<td>33.01</td>
<td>32.01</td>
<td>622.8562</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.722185</td>
</tr>
<tr>
<td>HA2072 0</td>
<td>30.81</td>
<td>28.77</td>
<td>29.79</td>
<td>648.2304</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.91456</td>
</tr>
</tbody>
</table>

Weighted average grade: 40.02 g/t
Construction/features

▪ First truly mobile Supersucker in Australia - possibly in the World – designed and built in Kalgoorlie, Western Australia
▪ Initially designed to carry-out underground exploration winzing
▪ Idea originated and first units built on opal fields in Coober Pedy in South Australia in the late 60-ties of previous Century
▪ Size: 2.2mW, 2.95mH and 5.3mL (excluding 3.5m clean-down jib)
▪ Track mounted, diesel-powered self-propelled unit
 ▪ Easily detachable heavy-duty wheels for longer distance towing
 ▪ Powered by diesel engine
 ▪ Can be easily converted to be electrically powered
▪ Installed devices to eliminate potential dust problems
▪ ROPS/FOPS features installed
▪ Works in conjunction with a bobcat/skid steer or small LHD
▪ Remotely-controlled capabilities can be installed
Re-fuelling underground

- At the start of shift
- Diesel hand-pumped to jerry cans from a 180ltr tank located on the utility vehicle – see photo
- Hand-pumped into supersucker with 220ltr tanks capacity
Projects to date by Ausvac Mining Pty Ltd

- May 2003 – Mt Pleasant Gold Project, WA – **First Job**
 - Ore drives clean-down **Plus cleaning of sump on surface**
- Aug 2003 – Otter-Juan Nickel Mine, Kambalda, WA
 - 15 deg. air-leg stope and ore drives clean-down
- Oct 2003 – Bendigo Gold Project, Victoria
 - Ore drives clean-down
- Dec 2003 – Cosmos Nickel Project, WA
 - Ore drives clean-down
- Feb 2004 – Agnew Gold Project, WA
 - Ore drives clean down
- Oct 2005 – Long-Victor Nickel Complex, WA
 - Stopes and ore drives clean-down at Gibb South
- Feb 2007 – Redross Nickel Mine, WA
 - Ore drives clean-down
- Nov 2010- Jan 2011 – Norseman Gold NL, WA
 - Stopes and ore drives clean-down at Harlequin Mine
Underground Mobile Supersucker

- **Excavation size requirements**
 - 3.2mW x 3.5mH drive
 - Designed to fit small 2 - 3 yard LHD size ore drives
- **Ventilation required**
 - Secondary: ~ 10 m³/s (S/sucker 7.0m³/s + bobcat 3.0m³/s)
 - For 140 kW diesel engine
 - ~60kW bobcat
 - Based on 0.05m³/kW - maximum diesel engine rating as per Western Australian (WA) Mines Regulations
- **Fresh** water supply required – due to high salinity of mine water in most u/g mines in WA
Capabilities/parameters

- Suction hose diameter - 200mm (8 inch)
 - Can be easily upgraded to 250mm (10 inch) hose
 - Fundamental for vacuuming bigger size rocks/increasing productivity
 - Oversize ore picked up/loaded into/by bobcat bucket at the end of vacuuming cycle
- Vertical lifting/suction - up to 50m
- Horizontal lifting - up to 50m +
Productivities in an ore drive

- 15 - 20 t/10hr shift with one (1) operator
- 40 t/10hr shift with two (2) operators
- 80 t/day with two (2) operators/shift - two (2) shifts/day
 - >2,000 t/month (assuming only 85% availability of equipment and working places)

Ore that is “normally” wasted

- Highly successful floor material recovery on a nickel mine in a 15 degrees flat-dipping air-leg/hand-held mining stope conducted in 2003
Extra Revenue from Gold or Nickel left behind and recovered from mine floor with vacuuming

Nickel

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine A Costs Au/t</td>
<td>6.0</td>
</tr>
<tr>
<td>Mill Recovery</td>
<td>2.5</td>
</tr>
<tr>
<td>Grade g/t</td>
<td>0.0</td>
</tr>
<tr>
<td>Revenue calculations</td>
<td></td>
</tr>
<tr>
<td>Total $/t</td>
<td>253,743</td>
</tr>
<tr>
<td>Width</td>
<td>6.0</td>
</tr>
<tr>
<td>SG</td>
<td>120.0</td>
</tr>
<tr>
<td>Grade %</td>
<td>100.0</td>
</tr>
<tr>
<td>Total ore tonnes</td>
<td>1,311.9</td>
</tr>
<tr>
<td>Extra revenue from Gold or Nickel left behind and recovered from mine floor with vacuuming</td>
<td>1,311.9</td>
</tr>
</tbody>
</table>

Gold

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine B Costs Au/t</td>
<td>4.0</td>
</tr>
<tr>
<td>Mill Recovery</td>
<td>8.0</td>
</tr>
<tr>
<td>Grade g/t</td>
<td>4.0</td>
</tr>
<tr>
<td>Revenue calculations</td>
<td></td>
</tr>
<tr>
<td>Total $/t</td>
<td>253,743</td>
</tr>
<tr>
<td>Width</td>
<td>6.0</td>
</tr>
<tr>
<td>SG</td>
<td>120.0</td>
</tr>
<tr>
<td>Grade %</td>
<td>100.0</td>
</tr>
<tr>
<td>Total ore tonnes</td>
<td>1,311.9</td>
</tr>
<tr>
<td>Total $/t</td>
<td>1,413,612</td>
</tr>
<tr>
<td>Extra revenue from Gold or Nickel left behind and recovered from mine floor with vacuuming</td>
<td>1,413,612</td>
</tr>
</tbody>
</table>

*Note: *Mine A is Vacuumed When Future Nickel Prices are likely to exceed approximately US $8/lb.
Why do Governments continue to Allow Mining Companies to Leave Behind Never to be Recovered High-grade Capitally Accessed and Broken Ore Underground i.e. Wasting Billions of Dollars including Additional Pollution to Environment ????
Underground Mobile Supersucker

Other applications

▪ Surface/mill/underground fast sumps/tanks clean-down
▪ Underground winzing – *originally designed for that application*
 ▪ Old Timers knew what they were doing
 ▪ Examples in Australia and in the World
▪ Mining of bottom sections of ore shoots not warranting capital development or pit stripping/cut-back
▪ Environmentally friendly, alternative mine access and ore hoisting system
 ▪ “Modified” Western Australian Norseman access and hoisting to high-grade low tonnage orebodies (*Regent/Crown/North Royal inclined shafts*)
 ▪ *No decline access in waste required i.e. less pollution to environment*
▪ Surface construction excavations and cleaning industry
 ▪ Swimming pools included